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Abstract

We study the role of investment banking as delegated cheap talk. In our model
of initial public offering (IPO), two parties have conflicting interests: a seller
wants to sell his firm, whereas a buyer wants to invest only in a good firm.
All communication is cheap talk. We show that the seller can influence the
buyer by contracting with an intermediary and delegating the communication.
Any successful contract requires the intermediary to share the risk of loss with
the buyer. A seller-optimal contract maximizes the intermediary’s bias in the
seller’s favor while maintaining minimally sufficient alignment with the buyer’s
incentives.
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1 Introduction

When Mark Zuckerberg announced his plan to sell the ownership shares of Face-
book to the public in 2012, he chose Morgan Stanley as the company’s investment
bank, designating it as the lead underwriter that would help manage the company’s
initial public offering (IPO).1 Among the underwriter’s most crucial responsibili-
ties were (a) due diligence—inspecting the company’s business and finances, and
(b) roadshow—meeting investors to convince them to buy its shares. For these ser-
vices, Facebook’s underwriters earned 1.1 percent of the total 16 billion US dollars
raised. More typical, moderate-sized IPOs in the United States usually pay invest-
ment banks even more hefty fraction, of 7 percent (Chen and Ritter, 2000; Ritter,
2023). Conventional explanation behind such large compensation is that investment
banks reduce the information asymmetry between the seller and the buyer through
expertise (Baron and Holmström, 1980; Baron, 1982; Ramakrishnan and Thakor,
1984; Biais, Bossaerts, and Rochet, 2002) or reputation (Beaty and Ritter, 1986;
Booth and Smith II, 1986; Carter and Manaster, 1990; Chemmanur and Fulghieri,
1994).

However, this view of investment banks as reputable experts seems at odds with
what the general public thinks, what the popular media portrays, and what invest-
ment bankers say about themselves. For example, the protesters of the Occupy Wall
Street movement in 2011 cried “We are the 99%,” referring to investment banks as
the undeservingly wealthy one percent that caused the 2008 financial crisis. Movies
such as Wall Street (1987), Margin Call (2011), and The Wolf of Wall Street (2013)
often depict investment bankers as sleazy, smooth-talking salesmen. In their mem-
oir Monkey Business: Swinging through the Wall Street Jungle, former investment
bankers Rolfe and Troob (2009) write:

[Investment bankers] only want to say good things. The better they can make
the company sound, the easier it will be for them to sell the securities. The
easier it is for them to sell the securities, the more certain they’ll be that the
clients will be happy. That means fees. Fees are important.

1We focus on traditional IPOs, where investment banks help private companies go public by
selling their ownership shares to large institutional investors and listing the shares on a stock
market. They are not the only way companies go public, however. Businesses are going public
increasingly through alternative arrangements, such as an auction, a direct listing, and a merger
by a special purpose acquisition company (SPAC). See Going Public by Campbell (2022) on this
recent development.
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Motivated by the apparent contrast between the academic and popular views,
this paper studies whether we can derive the value of investment banks not so much
from their expertise or reputation but from being delegated talkers. Our model
has one contract designer and two players: The contract designer is a seller (en-
trepreneur) owning a company with an uncertain future value; the two players are
an intermediary (investment bank) and a buyer (investor). The model captures a few
critical stages of a typical IPO, in which the investment bank conducts due diligence,
generates private information about the firm, and communicates it to potential in-
vestors. First, in the contracting stage, the seller designs a contract that specifies the
state-contingent transfers between the buyer and the intermediary. Next, in the due
diligence stage, the intermediary publicly announces its due diligence structure: the
structure of its costly information acquisition on the company’s uncertain state. She
then observes a private signal generated from that information structure. Finally,
in the roadshow stage, the intermediary talks to the buyer, who decides afterward
whether to invest in the company or not. The talk is cheap: the intermediary’s mes-
sage is costless, non-binding, and unverifiable.2 The players’ preferences are such
that the seller wants to sell his firm, the intermediary wants to maximize her ex-
pected profits, and the buyer wants to invest in a firm with a high market value in
the future.

In this setting, we show that a contract that implements a positive success rate
requires that the intermediary shares the risk of loss with the buyer (Theorem 1).
Namely, when the buyer experiences losses, the intermediary also incurs losses; when
the buyer experiences gains, the intermediary also incurs gains. The intuition is sim-
ple. For the intermediary’s communication to be credible to the buyer, the incentives
of the intermediary and the buyer must be at least somewhat aligned. The result
is similar to one in the canonical cheap talk game of Crawford and Sobel (1982),
in which the conflict of interest between the sender and the receiver must be small
enough for their communication to be informative. Our prediction is broadly con-

2In IPOs in the United States, the Securities and Exchange Commission (SEC) regulates invest-
ment banks’ (and sellers’) communication with investors to ensure complete and fair disclosure of
all material information as required by law. In practice, investment banks have substantial room
to tell the story of the seller’s firm. For example, Facebook’s registration statement for its IPO
begins: “Our mission is to make the world more open and connected. People use Facebook to stay
connected with their friends and family, to discover what is going on in the world around them, and
to share and express what matters to them to the people they care about. [...] We believe that we
are at the forefront of enabling faster, easier, and richer communication between people and that
Facebook has become an integral part of many of our users’ daily lives.”
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sistent with a well-known phenomenon: most IPOs in the United States are under
“firm commitment” contracts—in which the investment bank takes on the risk of
buying and reselling all of the shares—rather than “best-efforts” contracts, in which
the investment bank receives a fixed fee and does not face such a risk.3

Building on the previous observation, we derive a property of any seller-optimal
contract: an investment banking contract is seller-optimal only if it satisfies mini-
mally sufficient incentive alignment (hereafter minimal incentive alignment) between
the intermediary and the buyer (Theorem 2). By incentive alignment, we mean that
the intermediary and the buyer agree on the preferred action in all probable realiza-
tions of the intermediary’s due diligence. By minimal incentive alignment, we mean
additionally that the buyer is indifferent between investing and not investing even
when the due diligence produces good news. In other words, a contract satisfying
minimal incentive alignment—a necessary condition for a seller-optimum—aligns the
two parties’ interests just enough to make the intermediary’s communication credi-
ble.

This property of seller-optimal contracts points to a natural characterization: a
contract is seller-optimal if and only if it maximizes the intermediary’s bias in the
seller’s favor while maintaining minimal alignment with the buyer’s incentives. (The-
orem 3) Intuitively, if the intermediary’s incentives were too distorted in the seller’s
favor, the buyer would stop believing in the intermediary’s message. Therefore, the
seller should align the intermediary’s interests as close as possible to his own (i.e.,
incentivize selling) but not too close, so that the intermediary’s talk remains cred-
ible to the buyer. To this end, the seller should promise a higher rate of return on
investment (ROI) to the intermediary than to the buyer (Corollary 1). This result
explains why, in observed IPOs, entrepreneurs sell their shares to investment banks
at a significant discount relative to the prices offered to the public4: such contracts
make the sales more profitable to the investment banks and bring their incentives
closer to the sellers’.

3In contrast, it is not clear why best-efforts contract should not work as effectively as firm
commitment contracts, if investment banks operated more like reputable experts than delegated
talkers. See Ritter (2003) and Eckbo, Masulis, and Norli (2007) on the different types of IPO
contracts and the prevalence of firm commitment contracts.

4For example, Facebook sold 421,233,615 shares in its IPO at an offering price of $38 per share
and an investment banking discount of 1.1 percent. This arrangement means that the investment
banks led by Morgan Stanley bought these shares at a net offering price of $37.582 per share and
resold them to institutional investors at $38, effectively earning 1.1 percent of the total value raised
from investors as investment banking fees. Consequently, the investment banks earned 1.1% ×
$38 per share × 421, 233, 615 shares ≈ $176 million.
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Taken together, our results imply that delegated communication can make the
seller better off relative to two benchmarks: (1) when the seller himself takes the
investment bank’s role and (2) when the buyer assumes that role. In the first scenario,
when the seller serves as his investment bank, he is incentivized to recommend the
buyer to invest regardless of his private information. Consequently, even if the seller
has better expertise about his firm than anyone else, his talk cannot influence the
buyer’s decision. A crucial reason is that the seller cannot commit to state-contingent
transfers, as he sells off the ownership shares of the firm “as is” without responsibility
for future gains or losses. In the second scenario, when the buyer serves as the
investment bank, he tends to acquire the firm’s information more objectively than the
seller prefers, resulting in a suboptimal success rate. In contrast to these benchmarks,
using the intermediary allows the seller to design the intermediary’s incentives to
maximize the probability of a successful sale while keeping the intermediary’s talk
credible and informative.

Existing models in the literature customarily derive the value of investment banks
from expertise or reputation. Their investment banks often have better prior infor-
mation about the seller’s firm (Baron and Holmström, 1980; Baron, 1982; Biais,
Bossaerts, and Rochet, 2002) or collect the firm’s information at a lower cost (Ra-
makrishnan and Thakor, 1984). Other models let investment banks face a repeated
game (Beaty and Ritter, 1986; Booth and Smith II, 1986; Chemmanur and Fulghieri,
1994), making them concerned about their reputation to tell the truth. Empirical
studies find mixed evidence on these models. Ritter and Welch (2002) argue that
neither the expertise nor reputation of investment banks are a primary driver of their
observed phenomena, whereas Fang (2005) and Brau and Fawcett (2006) argue oth-
erwise. Nonetheless, recent works continue to broadly conform to either view (Eckbo,
Masulis, and Norli, 2007; Ljungqvist, 2007; Ragupathy, 2011; Lee and Masulis, 2011;
Katti and Phani, 2016; Lowry et al., 2017). In comparison, the investment bank in
our model has no particular expertise or reputation, as she does not have better prior
information or lower cost of acquiring information as others while facing a one-shot
game.5

5More broadly, our paper adds to the theory of financial intermediation that studies the
Principal-Agent relationship between financial intermediaries (agents) and their clients (principals).
A canonical view in the literature is that of Diamond (1984). He argues that financial interme-
diaries serve as delegated monitors, pooling deposits from many customers and making loans to
entrepreneurs. This view thus focuses on the relationship between the intermediary and the in-
vestor (depositor). In contrast, we focus on the relationship between the intermediary and the
seller (entrepreneur) and argue that, to entrepreneurs, intermediaries serve as delegated talkers.
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Although we use investment banking as the primary example, our model makes a
more general point about Sender-Receiver games: We let the sender’s credibility arise
endogenously by allowing a contract designer to determine the conflict of interest
between the seller and the buyer. In the classic setting by Crawford and Sobel
(1982), the sender and the receiver have exogenously given biases and exogenously
given private information. Many subsequent studies add endogenous information
acquisition to this setting while retaining the exogenous conflict of interest (Austen-
Smith, 1994; Pei, 2015; Argenziano, Severinov, and Squintani, 2016; Kreutzkamp,
2022; Lou, 2022; Lyu and Suen, 2022). A few papers allow endogenous conflicts of
interest but do not have a separate designer; in Ivanov (2010), the receiver decides the
conflict of interest between the sender and the receiver. In Antic and Persico (2020),
both the sender and the receiver choose their incentive schemes—for example, by
deciding their ownership shares in a company—before engaging in communication.
In comparison, we let a distinct contract designer determine the conflict of interest,
which consequently determines the sender’s credibility. For this reason, our model
differs from models of mediated communication (Goltsman et al., 2009; Ganguly
and Ray, 2012; Ambrus, Azevedo, and Kamada, 2013)—which takes the conflicts
of interest as given—and models of mediated persuasion (Arieli, Babichenko, and
Sandomirskiy, 2022; Zapechelnyuk, 2022), which takes the sender’s credibility or
commitment power as given.

We organize the rest of our paper as follows. In Section 2, we define the model,
the equilibrium, and the seller-optimal contract. In Section 3, we derive risk-sharing
as a necessary condition for any contract with a positive success rate. In Section
4, we show that any seller-optimal contract satisfies minimal incentive alignment,
arriving at a characterization. In Section 5, we discuss the seller’s optimal outcome
compared to those without an intermediary, concluding the paper. We include all
proofs in the Appendix.

2 Model of Initial Public Offering (IPO)

An initial public offering (IPO) is an intricate process spanning several months to
potentially years, with many rounds of planning, negotiation, and execution among
entrepreneurs, investment bankers, financial analysts, lawyers, auditors, investors,

For more theories of financial intermediation, see Bhattacharya and Thakor (1993), Table 3 of
Thakor (2020), and Section 2 of Clark, Houde, and Kastl (2021).
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and regulators.6 Our model focuses on the key actors and stages of IPOs that are
relevant to our question.

There are Seller (S), Intermediary (I), and Buyer (B). The seller (he) is an en-
trepreneur whose firm has an uncertain future state ω ∈ Ω = {0, 1}, where ω is
the firm’s opening price, or the firm’s market value when the ownership shares start
trading on a stock exchange.7 There is a publicly known, objective prior probabil-
ity p ∈ (0, 1) on the state ω = 1. The intermediary (she) is an investment bank
that can acquire private information about the firm’s state and send a cheap mes-
sage to the buyer. The buyer (he) is a consortium of investors whose final action is
a ∈ A = {0, 1} for investing (or buying, a = 1) and not investing (or not buying,
a = 0) in the ownership share of the seller’s firm. If the buyer invests, the seller
gives up his firm and receives a net offering price of κ.8 If the buyer does not invest,
the seller keeps his firm and retains its objective value p. The net offering price is
given as κ ∈ (p, 1), interpreted as having been optimally chosen at the beginning.

The seller designs a mechanism between the intermediary and the buyer through
the following arrangement. He first makes a take-it-or-leave-it offer9 of a contract t =
(t0, t1) ∈ R2 to the intermediary, where tω is the amount of transfer the intermediary
receives from the buyer when the buyer invests (a = 1) and the realized state is ω.10

If the intermediary rejects the offer, the seller retains his firm and other agents
receive zero payoffs. If she accepts the offer, the intermediary and the buyer enter a

6Hall et al. (2016) is a good practical introduction to the detailed IPO process.
7We simplify our problem by assuming that there are only two possible values and normalize

them to 0 and 1. For example, an IPO may either be over- or under-subscribed, depending on
whether there is a greater or less quantity of shares demanded than offered by the seller through
the intermediary. These two scenarios may lead to a higher or lower opening price than the net
offering price.

8For example, when Facebook went public on May 18th, 2012, Mark Zuckerberg sold its own-
ership at $37.582 per share net of investment banking fees ($0.418 per share). On the same day,
the shares started trading on the Nasdaq Stock Market at an opening price of $42 per share. As-
signing this outcome as the favorable state in our model (ω = 1), Facebook’s net offering price was
κ = 37.582/42 ≈ 0.9 after normalizing the opening price to 1

9By letting the seller make a take-or-leave-it offer, we assume that the seller has the full bargain-
ing power between himself and the intermediary. This setup is reasonable when many investment
banks compete to win the lead underwriter role for the seller’s IPO. It is straightforward to relax
the assumption by introducing a reservation payoff for the intermediary.

10In Facebook’s example, t1 represents the investment banking fee of $0.42 per share in the good
state, or t1 = 0.42/42 = 0.01 after normalizing by the opening price of $42 per share. In the same
example, t0 represents the investment bank’s payoff in the bad state, such as when the IPO is
under-subscribed and faces a smaller demand for shares than offered. As with most such contracts
in the United States, Facebook’s underwriting agreement specified that the intermediary would buy
all shares first and resell them to the investors. That is, t0 was negative, as the intermediary would
face losses from unsold shares in an under-subscribed IPO.
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Buyer
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2. Decides action a
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due diligence
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The IPO Mechanism

Figure 1: Summary of timing

two-player game called the IPO mechanism.
The IPO mechanism consists of two stages that involve only the intermediary

and the buyer. Let S = {s0, s1, . . . , sJ−1} be a fixed set of possible signals. In
Stage 1 (the “due diligence stage”), the intermediary publicly chooses an information
structure or a due diligence structure, a map σ : Ω −→ ∆(S), where we write σ(s|ω)
to represent the conditional probability of signal s given the state ω. We write the
set of all possible due diligence structures as Σ = (∆(S))Ω. After choosing a due
diligence structure σ ∈ Σ, the intermediary privately observes a realized signal sj ∈ S

from the probability distribution σ(·|ω). Consequently, the probability of receiving
a signal sj under the due diligence structure σ given a prior belief p is

Pσ(sj) = (1− p)σ(sj |0) + pσ(sj |1).

Consider any due diligence structure σ ∈ Σ. By Bayes’ rule and consistency with
the prior beliefs, the intermediary’s private posterior belief on the state ω = 1 given
a realized signal sj ∈ S is

qj =
pσ(sj |1)
Pσ(sj)

,

for all j such that Pσ(sj) > 0. We say that the due diligence structure σ induces a
posterior qj with probability Pσ(sj). A posterior qj is probable if Pσ(sj) > 0.

In Stage 2 (the “roadshow stage”), the intermediary sends a message m ∈ M = S
to the buyer.11 The message is cheap: it is (a) costless, (b) non-verifiable, and (c)
non-binding. After receiving the message, the buyer chooses an action a ∈ A =

{0, 1}. Finally, the state ω is publicly revealed. Figure 1 shows the summary of the
game’s timing.

11Letting S = M is without loss of generality because, if S ̸= M, we can redefine the signal
space S ′ and message space M′ as S ′ = M′ = S ∪M.
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After the IPO mechanism ends, the seller’s payoff is

uS(ω, a) = κa+ p · (1− a).

The intermediary’s payoff is

uIt,σ(ω, a) = tωa− C(σ),

where tωa is the intermediary’s revenue and C : Σ −→ R is the information cost
function.

Assumption 1. The information cost function C is posterior-separable.12 That is,
there exists a function c : [0, 1] −→ R with c(p) = 0 such that, for every due diligence
structure σ ∈ Σ that induces posteriors q0, q1, . . . , qJ−1,

C(σ) =

J−1∑
j=0

Pσ(sj)c(qj).

In addition, the function c satisfies the properties P1–P3:

P1. (Smoothness) c is continuous on [0, 1] and twice differentiable on (0, 1),

P2. (Curvature) c is strictly convex, and

P3. (Steep boundaries) − limq→0 c
′(q) = limq→1 c

′(q) = ∞.

We can interpret the function c(q) as representing a measure of relative certainty
at the posterior q from the prior p, for example, as in the reduction in Shannon
entropy. Note that the second property makes it more costly to choose a due dili-
gence structure that is more informative in the sense of Blackwell (1953). The third
property ensures that the intermediary choose a due diligence structure that induces
probable posteriors in the interior of [0, 1].

The buyer’s payoff is

uBt (ω, a) = (−κ+ ω − tω)a.

In the IPO mechanism, the intermediary’s strategy is (σ,µ), where µ = {µσ}σ∈Σ
is a collection of message rules µσ : S −→ ∆(M) that assigns each signal to a prob-
ability distribution over messages. We write µσ(m|s) to represent the conditional

12In the terminology by Caplin, Dean, and Leahy (2022), this cost function is also uniformly
posterior-separable.
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probability of the message m given the signal s, under the due diligence structure
σ. The buyer’s strategy is α = {ασ}σ∈Σ, a collection of action rules ασ : M −→ A.
A strategy profile of the IPO mechanism is the triple (σ,µ,α).

Given a due diligence structure σ, a message rule µ, and an action rule α, define
US(σ, µ, α), U I

t (σ, µ, α), and UB
t (σ, µ, α) as the expected payoffs of the seller, the

intermediary, and the buyer, where the expectation is taken over all realizations of
the states ω ∈ Ω, the signals s ∈ S, and the messages m ∈ M.

Definition 1 (Equilibrium). A strategy profile (σ∗,µ∗,α∗) is an equilibrium of the
IPO mechanism under a contract t = (t0, t1) if it satisfies conditions (a)–(c).

(a) (µ∗ and α∗ are mutual best responses) For every σ ∈ Σ, µ : S −→ ∆(M), and
α : M −→ A,

U I
t (σ, µ

∗
σ, α

∗
σ) ≥ U I

t (σ, µ, α
∗
σ) and UB

t (σ, µ∗
σ, α

∗
σ) ≥ UB

t (σ, µ∗
σ, α).

(b) ((µ∗,α∗) is not Pareto-dominated) There exists no pair (µ,α) that satisfies
condition (a) and, for some σ ∈ Σ,

U I
t (σ, µ

∗
σ, α

∗
σ) ≤ U I

t (σ, µσ, ασ) and UB
t (σ, µ∗

σ, α
∗
σ) ≤ UB

t (σ, µσ, ασ),

with at least one strict inequality.

(c) (σ∗ is a best response to (µ∗,α∗)) For every σ ∈ Σ,

U I
t (σ

∗, µ∗
σ∗ , α∗

σ∗) ≥ U I
t (σ, µ

∗
σ, α

∗
σ), and (1)

U I
t (σ

∗, µ∗
σ∗ , α∗

σ∗) ≥ 0. (2)

This definition applies the sequential equilibrium (Kreps and Wilson, 1982) to
our setting, with two additional restrictions. First, condition (b) demands that the
Nash equilibria of the talking stage (Stage 2) subgame be Pareto-efficient. That is,
we only consider cases in which the intermediary and buyer communicate efficiently
in the talking stage and rule out, for example, babbling equilibria whenever there
exists a mutually beneficial, informative one.13 Second, the condition (c) includes

13This requirement shrinks the set of implementable outcomes to reasonable ones, thus prevent-
ing the designer from being too powerful. For example, without this requirement, the seller can
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both the incentive compatibility and individual rationality constraints (1)–(2) for
the intermediary in Stage 1.

We are ready to define a seller-optimal investment banking contract or simply
seller-optimal contract.

Definition 2 (Seller-optimal contract). Let E(t) denote the set of equilibria of the
IPO mechanism under a contract t = (t0, t1). A contract t∗ is seller-optimal (or
optimal) if

t∗ ∈ argmax
t∈R2

[
sup

(σ,µ,α)∈E(t)
US(σ, µσ, ασ)

]
.

In other words, a contract is seller-optimal if it maximizes seller’s expected utility
in the best equilibrium. This definition follows the standard approach in mechanism
design, where the designer chooses the best-case outcome from the set of equilibria.

3 Successful investment banking contracts

Define the success rate of an equilibrium as the probability that the buyer invests.
Let us say that a contract t implements a success rate ρ if there exists an equilibrium
under t such that the success rate is ρ.

We note that it is impossible to achieve a 100-percent success rate.

Proposition 1. There exists no contract that implements a success rate of 1.

The crux of the proof is to apply Bayes-plausibility (Kamenica and Gentzkow,
2011), that the mean of the posteriors q equals the prior p. A success rate of 1 implies
that the buyer is willing to invest at every probable posterior q. Bayes-plausibility
implies that the buyer is willing to invest ex ante, contradicting our assumption on
the prior p.

Because a sure success is impossible, we draw our attention to contracts with pos-
itive success rates, or successful contracts. A successful contract necessarily requires
that the intermediary shares the risk of loss with the buyer.

Theorem 1. If a contract t = (t0, t1) implements a success rate ρ > 0, then t0 ∈
[−κ, 0) and t1 ∈ (0, 1− κ].

implement any due diligence structure σ in an equilibrium as long as it satisfies the participation
constraint (2), by choosing the uninformative outcome for subgames with any other due diligence
structures.
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a = 1
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Intermediary (before cost)
Buyer

Total

Figure 2: A successful contract requires a joint risk of loss

This result restricts the intermediary’s and the buyer’s payoffs from investing to
have the same signs for any successful contract, as the buyer’s payoff is −κ− t0 ≤ 0

in the bad state and 1− κ− t1 ≥ 0 in the good state. This restriction implies that
a “best-efforts” contract—compensating the intermediary with a fixed transfer (i.e.,
letting t0 = t1)—cannot be successful. Rather, a successful contract must make the
intermediary incur losses whenever the buyer incurs losses, and make the interme-
diary incur gains whenever the buyer incurs gains. This result is broadly consistent
with the fact that most observed IPOs in the United States are under “firm com-
mitment” contracts, in which the investment bank faces a substantial risk of losses
by agreeing to buy all offered shares from the seller and to resell them to investors.
Therefore, although our model does not explicitly allow the underwriting process of
buying and reselling, the result shows that it captures the essential phenomenon by
subjecting the intermediary to a joint risk of losses.

Figure 2 illustrates a typical contract (t0, t1) satisfying this requirement. The left
and right ends of the dashed line segment indicate the sum of the intermediary’s and
the buyer’s expected payoffs in the bad and good states, respectively. The left ends
of the solid line segments, indicating the payoffs in the bad state, are both below the
x-axis. The right ends of the solid line segments, indicating the payoffs in the good
state, are both above the x-axis.

The simple intuition behind the result is that the incentives of the intermediary
and the buyer must be at least somewhat aligned for the cheap talk between them
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Expected
payoff when

a = 1

p

After due diligence
After due diligence and talk

Posteriors

Intermediary (before cost)
Buyer

Total
Expected payoffs

(a) Hypothetical (b) Actual

Figure 3: Distribution of the intermediary’s and the buyer’s posteriors

to be informative. The argument proceeds as follows. Suppose an equilibrium has
a positive success rate. This implies that the distribution of the buyer’s posteriors
is such that the two prefer the same action (either to invest or not) regardless of
the realized posterior. Otherwise, either the intermediary or the buyer would want
to deviate from the supposed equilibrium, by sending a different message or taking
a different action. Therefore, the intermediary’s and the buyer’s expected payoffs
upon investing must have the same signs, for all probable posteriors of the buyer,
as illustrated by the brown dashed arrows in Panel (a) of Figure 3. To achieve such
incentive alignment, the contract must incur losses to both in the bad state and
gains to both in the good state.

We make this idea more precise by introducing a few additional definitions and
a key lemma. For any contract t = (t0, t1), define functions V I

t and V B
t such that,

for all q ∈ [0, 1],

V I
t (q) = (1− q)t0 + qt1, and

V B
t (q) = (1− q)(−κ− t0) + q(1− κ− t1).

The two functions represent the Stage-2 expected payoffs given a posterior q for the
intermediary and the buyer, respectively, when the buyer chooses to invest (a = 1).
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The solid line segments in Figure 2 illustrate the functions V I
t and V B

t for an example
contract.

For every due diligence structure σ ∈ Σ and every message rule µ : S −→ M,
define (µ ◦ σ)(m|ω) as

(µ ◦ σ)(m|ω) =
∑
s∈S

µ(m|s)σ(s|ω), for all m ∈ M and ω ∈ Ω.

That is, (µ◦σ)(m|ω) is the induced distribution of messages m ∈ M in state ω ∈ Ω.
Since M = S, the product µ ◦ σ itself is an element of Σ. For example, in both
panels of Figure 3, the solid green arrows indicate the intermediary’s posteriors after
the due diligence σ, whereas the dashed brown arrows indicate the buyer’s posteriors
after the due diligence and talk µ ◦ σ.

Definition 3. A due diligence structure σ ∈ Σ is incentive-aligned under a contract
t if, for all probable posteriors q induced by σ, V I

t (q)V
B
t (q) ≥ 0.

In other words, a due diligence structure σ is incentive-aligned if both players
weakly prefer the same actions in all probable realizations of the signals s from σ.

The following lemma is the key step for the proof of Theorem 1.

Lemma 1. Suppose a contract t implements a success rate ρ ∈ (0, 1) with an equi-
librium (σ,µ,α). The equilibrium satisfies

(a) Fully revealing messages: µσ ◦ σ induces the same distribution of posteriors as
σ,

(b) Incentive alignment: σ is incentive-aligned, and

(c) Binary due diligence: σ induces exactly two probable posteriors.

Put differently, in any equilibrium with a positive success rate, the intermediary
truthfully reports the result of her due diligence and prefers the same action as
the buyer after seeing one of two probable signals. This result means that the
distribution of posteriors for the intermediary and the buyer should resemble the
arrows in Panel (b) rather than (a) in Figure 3. First, because the buyer’s message
rule is fully revealing, the points of the dashed brown arrows overlap exactly with
those of the solid green arrows. Second, because the incentives of the intermediary
and the buyer are aligned, their expected payoffs at those arrows have the same signs.
Third, because the due diligence is binary, there are only two solid green arrows.
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The proof of the lemma considers a hypothetical equilibrium with a positive
success rate and shows that it should satisfy the three properties. The starting point
is that the buyer’s posteriors must satisfy incentive alignment for the cheap talk
to be informative. Given this incentive alignment, the intermediary has no reason
to garble her message; if she garbles, it is strictly less costly to obtain the same
outcome by choosing a due diligence that directly induces the same distribution of
posteriors and reporting truthfully. This result echoes Pei (2015) who finds that
the sender in a cheap talk game with endogenous information acquisition always
fully reveals his private information. Finally, given the incentive alignment and the
truthful revelation, there is no reason for the intermediary to conduct a due diligence
that produces more than two posteriors, because there are only two possible actions.
This result is similar to Corollary 1 in Matějka and McKay (2015).

4 Optimal investment banking contracts

Building on our previous results about successful contracts, we narrow our atten-
tion to seller-optimal ones: Seller-optimal contracts satisfy minimal (or minimally
sufficient) incentive alignment between the intermediary and the buyer.

4.1 Optimal contracts satisfy minimal incentive alignment

To define minimal incentive alignment, write T = [−κ, 0) × (0, 1 − κ], the set of
contracts that satisfy the necessary condition of a successful contract from Theorem
1. Without loss of generality, let Σ̂ denote the set of all σ ∈ Σ such that, for all
ω ∈ Ω and for all j = 2, 3, . . . , J − 1, we have σ(sj |ω) = 0 and σ(s1|0) < σ(s1|1).
That is, Σ̂ is the set of all binary due diligence structures such that s0 is bad news
(with posterior less than p) and s1 is good news (with posterior greater than p).

Definition 4 (Minimal incentive alignment). A due diligence structure σ ∈ Σ̂ that
induces a pair of posteriors (ℓ, r) ∈ [0, p)×(p, 1] is minimally incentive-aligned under
a contract t ∈ T if it is incentive-aligned under t and it satisfies V B

t (r) = 0.14

In other words, minimal incentive alignment means that the intermediary and the
buyer agree on their interim weakly preferred actions just sufficiently, as the buyer
is indifferent between investing and not investing even after hearing good news.

14Recall that V I
t and V B

t are functions defined as V I
t (q) = (1 − q)t0 + qt1 and V B

t (q) = (1 −
q)(−κ− t0) + q(1− κ− t1). A due diligence structure σ ∈ Σ is incentive-aligned under a contract t
if V I

t (q)V
B
t (q) ≥ 0 for all probable posteriors q induced by σ (Definition 3).
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Figure 4: Incentive alignment may or may not be minimal in an equilibrium

Note: Profit refers to the intermediary’s expected revenue (V I
t (q) if the buyer invests; 0 otherwise)

minus the measure of relative certainty c(q).

Theorem 2. Suppose a contract t∗ ∈ T is seller-optimal, implementing a maximal
success rate ρ∗ > 0 with equilibrium (σ∗,µ∗,α∗). The due diligence structure σ∗ is
minimally incentive-aligned under t∗.

To better understand this statement, we illustrate in Figure 4 what it means for
a binary due diligence structure to be minimally incentive-aligned. Panel (a) shows
an equilibrium due diligence structure σ ∈ Σ̂ that is incentive-aligned under some
contract t ∈ T . The points ℓ and r on the x-axis are the posteriors induced by σ.
The expected payoffs V I

t (dashed line) and V B
t (solid red line) from investing are

such that both the intermediary and the buyer prefer not investing (a = 0) when
they see bad news (ℓ) and prefer investing (a = 1) when they see good news (r).
This due diligence structure is not minimally incentive-aligned because the buyer
strictly prefers investing when he sees good news. In contrast, the equilibrium due
diligence structure shown in Panel (b) is minimally incentive-aligned, as the buyer
is indifferent between investing and not investing when he sees good news (r). In
essence, Theorem 2 says that any equilibrium due diligence structure under a seller-
optimal contract must resemble Panel (b) rather than Panel (a).

The intuition behind the result is the following: Unless a contract already achieves
minimal incentive alignment, the seller can always improve the success rate by ad-
justing the contract slightly to further incentivize selling. Specifically, the seller can
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bring the intermediary’s incentives closer to his own by increasing the intermedi-
ary’s revenues in both states (t0 and t1) upon a successful sale. In Panel (a) of
Figure 4, this adjustment corresponds to shifting up the intermediary’s revenue and
profit curves upon success (a = 1). As the intermediary’s profit from a successful
sale shifts up, the intermediary adjusts its due diligence by lowering both posteriors
(ℓ and r) to maximize its expected profit.15 This change produces good news (r)
with greater probability than before, increasing the success rate. In contrast, if a
contract already achieves minimal incentive alignment as in Panel (b), such improve-
ment is not possible. The reason is that increasing the intermediary’s revenues (t0
and t1) further breaks the incentive alignment between the intermediary and the
buyer, rendering the intermediary’s communication incredible. It follows that any
seller-optimal contract must satisfy minimal incentive alignment of its equilibrium
due diligence structure. Our proof of the theorem reproduces this logic.

The same intuition makes it clear that even though our result may sound fa-
miliar from Bayesian persuasion and information design problems (Kamenica and
Gentzkow, 2011; Kamenica, 2019; Bergemann and Morris, 2019), it is driven by a
different force: the contractual design. Depending on the contract and the result-
ing ex-post payoffs, the information designer in our model (the intermediary) may
happily choose a more balanced information structure, not a minimally aligned one.
However, such a contract would be strictly suboptimal for the contract designer (the
seller).

4.2 Characterization of the optimal contract

Theorem 2 is useful because it leads to a natural characterization of seller-optimal
contracts: A contract is seller-optimal if and only if it maximizes the intermediary’s
bias in favor of the seller while maintaining minimal alignment with the buyer’s
incentives. To arrive at this characterization, we make an auxiliary definition.

15The intermediary’s equilibrium choice of the due diligence follows the concavification method
of Kamenica and Gentzkow (2011). That is, the intermediary finds a pair of posteriors such that
the line passing through the corresponding points on the profit curves are tangent to both curves.
This approach is valid in our setting as long as the posteriors satisfy strict incentive alignment
(V I

t (q)V
B
t (w) > 0 for all probable posteriors q) between the intermediary and the buyer, so that

the intermediary’s communication is strictly credible. The resulting solution is identical to that
in a problem of rational inattention (Matějka and McKay, 2015; Caplin, Dean, and Leahy, 2019).
Note that this method is no longer valid when the incentive alignment is minimal, as in Panel (b)
of Figure 4.
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Figure 5: Finding a seller-optimal pair of posteriors

Definition 5. A pair of posteriors (ℓ∗, r∗) ∈ [0, p)× (p, 1] is seller-optimal if

(ℓ∗, r∗) ∈ argmax
(ℓ,r)∈[0,p)×(p,1]

p− ℓ

r − ℓ

subject to the implementability constraint

c(r)− c(ℓ)− (r − ℓ)c′(ℓ) = r − κ.

Note that the definition does not involve any specific contract t. To restate, a
pair of posteriors is seller-optimal if it maximizes the probability of good news16

subject to the implementability constraint. Intuitively, the constraint represents the
set of all minimally incentive-aligned due diligence structures that the intermediary
would choose as her best response under some contract. Figure 5 illustrates the
implementability constraint and a seller-optimal pair of posteriors. Such a seller-
optimal pair of posteriors exists if the cost of acquiring information is sufficiently
small.17

Theorem 3. Suppose a contract t∗ = (t∗0, t
∗
1) ∈ T implements a positive success rate.

16The probability of good news is Pσ(s1) = p−ℓ
r−ℓ

, as (1 − Pσ(s1))ℓ + Pσ(s1)r = p by Bayes
plausibility.

17If acquiring information is too costly, the set of posteriors satisfying the implementability
constraint is empty, and no seller-optimal pair of posteriors exists. In Appendix B, we provide the
precise necessary and sufficient conditions for the existence of a solution.
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Figure 6: Seller-optimal contracts

The contract is seller-optimal if and only if

(Minimal sufficiency) (1− r∗)t∗0 + r∗t∗1 = r∗ − κ, (3)

(Incentive alignment) (1− ℓ∗)t∗0 + ℓ∗t∗1 ≤ 0, and (4)

(Incentive compatibility) (1− ℓ∗)t∗0 + ℓ∗t∗1 ≥ c(r∗)− c(ℓ∗)− (r∗ − ℓ∗)c′(r∗). (5)

for a seller-optimal pair of posteriors (ℓ∗, r∗) ∈ [0, p)× (p, 1].

In other words, a contract implements a seller-optimal pair of posteriors if and
only if it satisfies the three conditions (3)–(5). Each condition has a concrete eco-
nomic meaning. Condition (3) means that the contract makes the buyer indifferent
between investing and not investing upon hearing good news. Condition (4) means
that the contract makes the intermediary to prefer not investing upon seeing bad
news, thus aligned with the buyer. Condition (5) means that the contract makes it
incentive-compatible for the intermediary to choose the seller-optimal pair of pos-
teriors over others. All in all, a contract is optimal if and only if it maximizes the
success rate (implements the seller-optimal posteriors) while maintaining minimally
sufficient incentive alignment (conditions 3–4) in equilibrium (condition 5). Because
the right-hand side of (5) is strictly negative (by the strict convexity of c), the set
of seller-optimal contracts is nonempty given (ℓ∗, r∗): It is the closed line segment
defined by (3)–(5). Figure 6 illustrates the three conditions and shows the resulting
set of seller-optimal contracts.
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Many contracts implement the same seller-optimal pair of posteriors, as seen from
Theorem 3 and Figure 6. This multiplicity is not an accident but a consequence of
minimal incentive alignment. When the equilibrium due diligence structure is not
minimally incentive-aligned (as in Figure 4a), it responds sensitively to changes in
the contract. However, when the equilibrium due diligence structure is minimally
incentive-aligned (as in Figure 4b), the intermediary does not lower the posterior
upon good news (r) in response to certain changes in the contract, as it would break
the incentive alignment and make her subsequent communication uninformative.
This insensitivity implies that there are multiple contracts that induce the same
pair of posteriors.

4.3 Implication for the return on investment (ROI)

An immediate corollary of Theorem 3 is that the intermediary earns a higher ex-post
return relative to her risk than the buyer. Define the (ex-post) return on investment
(ROI) as

Return on investment (ROI) =
Dollars earned in the good state

Dollars lost in the bad state
,

which applies the conventional notion of ROI—the net value of investment divided
by the cost of investment—to our setting. For example, the aggregate ROI for the
intermediary and the buyer together is 1−κ

κ , as the two agents altogether earn 1− κ

(the net value of investment) in the good state and lose κ (the cost of investment)
in the bad state. In comparison, the ROI for the intermediary is t1

−t0
.

To focus on a salient case among the many seller-optimal contracts, define the
minimum-variance seller-optimal contract as the contract that satisfies the condition
(4) from Theorem 3 with equality. In Figure 6, it is the point closest to the origin
on the line segment representing the optimal contracts. This terminology is ade-
quate because it minimizes the variance of the transfer tω among all seller-optimal
contracts. Let (ℓ∗, r∗) ∈ [0, p)× (p, 1] denote a seller-optimal pair of posteriors.

Corollary 1. Under any seller-optimal contract, the intermediary’s return on in-
vestment (ROI) is higher than the buyer’s ROI. In particular, under the minimum-
variance seller-optimal contract,

Intermediary’s ROI =
1− ℓ∗

ℓ∗
>

1− κ

κ
>

1− r∗

r∗
= Buyer’s ROI.
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The intuition behind this corollary is our earlier characterization that seller-
optimal contracts bring the intermediary’s incentives closest to the seller’s while
maintaining minimal alignment with the buyer’s. A necessary condition to achieve
such a contract is to offer the intermediary a higher rate of return from investing
than the overall return.18

4.4 Comparative statics

In addition to the immediate implications for the ROI, our full characterization of the
seller-optimal contracts (Theorem 3) facilitates the following exercises in comparative
statics. Our model has three exogenous variables: the initial probability p that
the entrepreneur’s firm will have high market value, the net offering price κ of the
entrepreneur’s firm, and the cost of information acquisition C by the investment
bank. We summarize how changes in these underlying parameters affect the model’s
endogenous outcomes and include the precise results as Corollaries C.1–C.3 in the
Appendix.

First, an increase in the ex-ante probability p raises the success rate ρ∗ of selling
the entrepreneur’s firm to the buyer under optimal contracts. Although this result by
itself is unsurprising, the changes in the due diligence structure and the contract that
lead to this outcome are interesting: The intermediary collects (and communicates)
less precise information than before, resulting in a reduced compensation (both t∗0
and t∗1) relative to the firm’s market value. The intuition is that the investment bank
does not need to work as hard as before to sell the entrepreneur’s firm to the buyer.

Second, an increase in the net offering price κ reduces the seller’s success rate ρ∗

and his expected revenue κρ∗ under optimal contracts. In other words, the buyer’s
demand ρ∗ for the entrepreneur’s firm through the investment bank is inelastic with
respect to the firm’s price κ. Intuitively, this result arises because of agency costs

18This implication is testable in principle by checking whether the condition t1
−t0

> 1−κ
κ

is sat-
isfied, although data restrictions on t0 make this test difficult in practice. For example, Facebook
sold its shares at a net offering price of $37.582 per share, and its opening price was $42 per share
on the Nasdaq Stock Market when the shares started trading there. After normalizing the opening
price to 1, these values imply that κ = 37.582/42 ≈ 0.9 and the overall ROI was 1−κ

κ
≈ 0.12.

Meanwhile, the investment banks earned $0.418 per share as fees or 1.1 percent of the gross offering
price of $38 per share. This value implies t1 = 0.418/42 ≈ 0.01 after normalization. Therefore,
the required condition is satisfied as long as t0 > −t1 · κ

1−κ
≈ −0.085, i.e., the investment bank

in the bad state loses less than 8.5 percent of Facebook’s potential market value. However, we do
not observe t0, because the bad state did not materialize, and the value is typically not disclosed
in security filings in the United States.
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or the implementability constraint: it is costly to induce the intermediary to collect
and communicate information that extracts a greater surplus from the buyer.

Third, as acquiring information becomes less costly, the due diligence structure
under optimal contracts approaches that of Bayesian persuasion by Kamenica and
Gentzkow (2011). That is, it becomes close to the structure that the seller would
choose if he could commit to revealing information truthfully after acquiring it cost-
lessly. Unlike in their setting, however, the seller in our model achieves a similar
outcome not by his commitment power but by appropriately designing the contract
that aligns the intermediary’s incentives with the buyer’s. As a result, the success
rate ρ∗ under optimal contracts approaches p/κ as the cost of information scales
down approaching 0.

5 Discussion

Our results make concrete predictions about investment banking contracts in a model
in which an investment bank (intermediary) serves as a delegated communicator from
an entrepreneur (seller) to an investor (buyer). Any successful contract must exhibit
a shared risk of loss between the intermediary and the buyer (Theorem 1). A seller-
optimal contract maximizes the intermediary’s incentives in favor of the seller while
maintaining a minimal alignment with the buyer’s incentives (Theorems 2–3). Seller-
optimal contracts provide a higher rate return relative to risk to the intermediary
than to the buyer (Corollary 1).

It is straightforward to see from our analysis how this arrangement with an in-
termediary can strictly benefit the seller compared to scenarios without one. For
instance, on the one hand, consider an alternative model in which the seller himself
serves as the investment bank. The seller enters the IPO mechanism as the inter-
mediary, with a critical restriction that t0 ≥ 0 and t1 ≥ 0—in other words, the
entrepreneur cannot commit to any state-contingent transfers to the buyer. That
is, the entrepreneur is selling the firm “as is” and cannot be held responsible for
its future state. In this scenario, the seller’s incentives cannot be aligned with the
buyer’s, as he gains a positive amount in both good and bad states when the buyer
invests. It follows that there is no trade. This outcome remains the same even if the
entrepreneur, with insider knowledge about his firm, has a significantly lower or zero
cost of information than any investment bank. Therefore, intermediaries acting as
delegated talkers with sufficient capital are valuable when the seller himself cannot
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credibly commit to a shared risk of loss.
On the other hand, consider another alternative model in which the investor

serves as the investment bank: the original buyer plays both the intermediary and
the buyer in the IPO mechanism. The contract is irrelevant in this case because it
represents the amount of transfers from the buyer to the buyer himself. Regardless
of the contract, the buyer gets the payoff −κ in the bad state and 1− κ in the good
state. As a result, the buyer collects information as the intermediary would in the
original model under the contract (t0, t1) = (−κ, 1 − κ). Unlike the intermediary
in the original model, the buyer is not constrained by incentive alignment because
he communicates with himself. Despite this absence of friction in communication,
this arrangement cannot be seller-optimal when acquiring information is sufficiently
inexpensive. The success rate in the alternative model approaches p as the cost of
information acquisition scales down approaching 0, whereas the success rate in the
original model approaches a strictly higher value, p/κ.19

All in all, our model formalizes an under-studied function of investment banks in
initial public offerings (IPOs) as delegated communicators. Without assuming their
expertise or reputational concerns, we show that their risk-bearing capacity makes
their cheap talk credible and informative. Such delegated talkers are especially
valuable when the seller cannot be held liable for the ex-post losses to the buyer.

Although our paper has focused on investment banks and IPOs as a leading
example, one can apply this model to similar settings where two parties have a sub-
stantial conflict of interest. For instance, consider a high school student seeking
admission to a college and the college’s admission committee that aims to accept
only the most taleted students. Given the incentives of both, the student’s appli-
cation essay claiming his talent would not be credible. As a result, he needs an
intermediary—his teacher or counselor—to evaluate him and send a recommenda-
tion letter. In this case, a student-optimal school policy would incentivize the teacher
to be maximally biased in the student’s favor while maintaining minimal alignment
with the admission committee’s interests.

19To see why the success rate approaches p/κ in the original model, see the related discussion in
Subsection 4.4 (Comparative statics) or its precise statement in Corollary C.3 in the Appendix.
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A Proofs of statements in the main text

Proof of Proposition 1

On the contrary, suppose a contract t implements a success rate of 1 with equilibrium
(σ,µ,α). All posteriors q induced by µσ ◦ σ with positive probability must satisfy
V B
t (q) ≥ 0. It follows that V B

t (p) ≥ 0 because p is a weighted average of all posteriors
induced by µσ ◦ σ. Observe that

V I
t (p) + V B

t (p) = (1− p)(−κ) + p(1− κ) < 0,

so V I
t (p) < 0. We have

U I
t (σ, µσ, ασ) ≤

J−1∑
j=0

V I
t (qj)Pµσ◦σ(sj) = V I

t (p) < 0,

where q0, q1, . . . , qJ−1 are the posteriors induced by µσ ◦ σ. The first inequality is
from the definitions of U I

t and V I
t . The equality is due to the fact that V I

t is affine. It
follows that U I

t (σ, µσ, ασ) < 0. Thus, (σ,µ,α) is not an equilibrium, a contradiction.
■

Proof of Lemma 1

From Proposition 1, we know that there exists no contract that implements a success
rate of 1. Suppose t implements ρ ∈ (0, 1) with an equilibrium (σ,µ,α) in an IPO
mechanism. Let q̃0, q̃1, . . . , q̃J−1 denote the posteriors induced by σ̃ = µσ ◦σ. Define
subsets of messages M0 = {m ∈ M : ασ(m) = 0} and M1 = {m ∈ M : ασ(m) = 1}.
Since ρ ∈ (0, 1), M0 and M1 are nonempty.

Step 1: Show that σ̃ is incentive-aligned. On the contrary, suppose that σ̃

is not incentive-aligned: there exists j such that Pσ̃(sj) > 0 and V I
t (q̃j)V

B
t (q̃j) < 0.

First, suppose V I
t (q̃j) < 0 and V B

t (q̃j) > 0. Since ασ is a best response to µσ,
ασ(sj) = 1. Then µσ is not a best response to ασ, as decreasing µσ(sj |s) and
increasing µσ(s

′|s) for some s′ ∈ M0 by the same amount makes the intermediary
strictly better off, a contradiction. Second, suppose V I

t (q̃j) > 0 and V B
t (q̃j) < 0.

Since ασ is a best response to µσ, ασ(sj) = 0. Then µσ is not a best response to ασ,
as decreasing µσ(sj |s) and increasing µσ(s

′|s) for some s′ ∈ M1 by the same amount
makes the intermediary strictly better off, a contradiction.
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Step 2: Construct a binary due diligence structure σ′. Let σ′ ∈ Σ such
that, for all ω ∈ Ω,

σ′(sj |ω) =
∑
s∈Mj

σ̃(s|ω), for j = 0, 1,

and σ′(sj |ω) = 0 for j = 2, 3, . . . , J − 1. The constructed due diligence structure σ′

induces two posteriors with positive probabilities: for j = 0, 1,

q′j =
pσ′(sj |ω)
Pσ′(sj)

=

∑
s∈Mj

pσ̃(s|ω)
Pσ′(sj)

,

with probabilities

Pσ′(sj) = (1− p)σ′(sj |0) + pσ′(sj |1)

= (1− p)
∑
s∈Mj

σ̃(s|0) + p
∑
s∈Mj

σ̃(sj |1).

Observe that, for all j = 0, 1, q′j is a weighted average of posteriors q̃k whose signals
belong to Mj . Namely, for all j = 0, 1,

q′j =
∑

sk∈Mj

q̃k
Pσ′(sk)

Pσ′(sj)
.

We show that the constructed posteriors q′0 and q′1 are distinct in Step 4.
Step 3: Show that σ′ is incentive-aligned. Since σ̃ is incentive-aligned,

V I
t (q̃k)V

B
t (q̃k) ≥ 0 for all posteriors q̃k with positive probabilities. Observe that,

by construction, ασ(sk) = 0 for all sk ∈ M0, so V B
t (q̃k) ≤ 0 for all k such that

sk ∈ M0. Then V I
t (q̃k) ≤ 0 for all k such that sk ∈ M0. Similarly, by construction,

ασ(sk) = 1 for all sk ∈ M1, so V B
t (q̃k) ≥ 0 for all k such that sk ∈ M1. It follows

that V I
t (q̃k) ≥ 0 for all k such that sk ∈ M1.

Observe that V I
t and V B

t are affine. Since q′0 is a weighted average of posteriors
q̃k for all k such that sk ∈ M0, V I

t (q
′
0) ≤ 0 and V B

t (q′0) ≤ 0. Similarly, since q′1 is
a weighted average of posteriors q̃k for all k such that sk ∈ M1, V I

t (q
′
1) ≥ 0 and

V B
t (q′1) ≥ 0. Therefore, V I

t (q
′
j)V

B
t (q′j) ≥ 0 for all j = 0, 1.

Step 4: Show that q′0 ̸= q′1. On the contrary, suppose q′0 = q′1. Recall from
Step 3 that, for each j = 0, 1, q′j is an weighted average of all q̃k such that sk ∈ Mj .
Also recall that V B

t (q̃k) ≤ 0 for all q̃k such that sk ∈ M0. Similarly, V B
t (q̃k) ≥ 0 for
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all q̃k such that sk ∈ M1. Since V B
t is affine, these inequalities imply that q̃k = p for

all k = 0, 1, . . . , J − 1. Then ρ = 0 or ρ = 1, a contradiction.
Step 5: Characterize µσ′ and ασ′. Consider µσ′ and ασ′ . Because (σ,µ,α)

is an equilibrium, we know that µσ′ and ασ′ are mutual best responses given σ′ and
that the pair is not Pareto-dominated by other such pairs of mutual best responses.
Let M ′

0 = {m ∈ M : ασ′(m) = 0} and M ′
1 = {m ∈ M : ασ′(m) = 1}. We claim that

M ′
0 and M ′

1 are nonempty, and µσ′ satisfies∑
m∈M0

µσ′(m|s0) = 1 and
∑

m∈M1

µσ′(m|s1) = 1, (6)

which implies that µσ′ is fully revealing. To show that M ′
0 and M ′

1 are nonempty,
suppose that one of them is empty.

First, suppose M ′
0 is empty. Then ασ′(m) = 1 for all m ∈ M, implying that

V B
t (q′0) ≥ 0 and V B

t (q′1) ≥ 0. Let q′′ denote the minimum of the two posteriors
q′0 and q′1. Then q′′ < p because q′0 ̸= q′1. From the definitions of V I

t and V B
t ,

V B
t (q′′) ≥ 0 implies that

V I
t (q

′′) ≤ (1− q′′)(−κ) + q′′(1− κ).

The right-hand side of this inequality is strictly negative because q′′ < p < κ.
Then V I

t (q
′′) < 0 whereas V B

t (q′′) ≥ 0. Recall that σ′ is incentive-aligned, so
V I
t (q

′′)V B
t (q′′) ≥ 0 in particular. Then V B

t (q′′) = 0. However, (µσ′ , ασ′) is Pareto-
dominated by a pair (µ′, α′) where

µ′(s|s) = 1, for all s ∈ S,

α′(m) = 1, if and only if m = s1.

Then ασ′ is not a best response, a contradiction. Second, suppose M ′
1 is empty.

Then both the intermediary and the buyer earns zero payoffs at this stage, whereas
(µ′, α′) earns the buyer a nonnegative payoff and the intermediary a positive payoff.
Then (µσ′ , ασ′) is Pareto-dominated by (µ′, α′), a contradiction.

To show equation (6), suppose that this equation is not true: there exists m /∈ Mj

such that µσ′(m|sj) > 0 for some j = {0, 1}. Then µσ′ is not a best response because
the intermediary strictly gains by reducing µσ′(m|sj) > 0 and increasing µσ′(m′|sd)
for some m′ ∈ Mj by the same amount.
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Conversely, let us show that if M ′
0 and M ′

1 are nonempty and equation (6) is true,
then µσ′ and ασ′ are mutual best responses and the pair is not Pareto-dominated.
Since µσ′ is fully revealing and σ′ is incentive-aligned, µσ′ and ασ′ are mutual best re-
sponses. Moreover, because µσ′ is fully revealing, no other mutually best-responding
pair gives a higher expected payoff to the intermediary or the buyer.

Step 6: Show that U I
t (σ

′, µσ′ , ασ′) = U I
t (σ, µσ, ασ). By the incentive alignment

of σ and the affineness of V I
t ,

1∑
j=0

Pσ′(sj)V
I
t (qj) =

J−1∑
j=0

Pσ̃(sj)V
I
t (qj) (7)

Moreover, by construction, σ′ is a garbling of σ̃ and σ̃ is a garbling of σ. Thus,

C(σ′) ≤ C(σ̃) ≤ C(σ).

Observe that U I
t (σ

′, µσ′ , ασ′) equals the left-hand side of (7) minus the cost c(σ′).
Also, U I

t (σ, µσασ′) equals the right-hand side of (7) minus the cost c(σ). Then
U I
t (σ

′, µσ′ , ασ′) ≥ U I
t (σ, µσ, ασ). Since σ is a best response to (µ,σ), U I

t (σ
′, µσ′ , ασ′) ≤

U I
t (σ, µσ, ασ). It follows that U I

t (σ
′, µσ′ , ασ′) = U I

t (σ, µσ, ασ).
Step 7: Show that σ = σ′. Observe that, if σ is binary, we have σ = σ′

by construction. Suppose σ is not binary, inducing more than two posteriors with
positive probabilities. This implies that σ′ is strictly less Blackwell-informative than
σ, so C(σ′) < C(σ). This implies that U I

t (σ, µσ, ασ) < U I
t (σ

′, µσ′ , ασ′), which is
impossible. So σ = σ′. Observe from Step 3 that σ′ is incentive-aligned, so σ is
incentive-aligned. Observe also from Step 5 that µσ′ is fully revealing, thus µσ is
fully revealing. Therefore, the equilibrium (σ,µ,α) satisfies fully revealing messages,
incentive alignment, and binary due diligence. ■

Proof of Theorem 1

The following lemma establishes that the intermediary’ incentives are balanced, in
the sense that she prefers that the buyer does not invest when her posterior is
pessimistic and prefers that the buyer does invest when her posterior is optimistic.

Lemma A.1. Suppose a contract t implements a success rate ρ ∈ (0, 1) with some
equilibrium. Let (ℓ, r) ∈ [0, p) × (p, 1] denote the pair of posteriors induced by the
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equilibrium due diligence. The intermediary’s incentives are balanced: V I
t (ℓ) ≤ 0

and V I
t (r) > 0.

Proof. Let (σ,µ,α) denote the said equilibrium, and suppose that the intermediary’s
incentives are not balanced. This implies that V I

t (ℓ)V
I
t (r) ≥ 0. Consider the fol-

lowing two cases. First, suppose V I
t (ℓ) ≤ 0 and V I

t (r) ≤ 0. Then the intermediary’s
profit is negative, so (σ,µ,α) cannot be an equilibrium, a contradiction. Second,
suppose V I

t (ℓ) > 0. Then V B
t < 0, because V I

t (ℓ) + V B
t (ℓ) < V I

t (p) + V B
t (p) < 0.

Then σ is not aligned, a contradiction. Therefore, V I
t (ℓ) ≤ 0 and V I

t (r) > 0.

We now prove Theorem 1. Let (ℓ, r) ∈ [0, p)× (p, 1] denote the pair of posteriors
with positive probability induced by the equilibrium due diligence structure. By the
definitions of V I

t and V B
t , for all q ∈ [0, 1],

(t1 − t0)q ≥ −t0 if and only if V I
t (q) ≥ 0, and (8)

(1− t1 + t0)q ≥ κ+ t0 if and only if V B
t (q) ≥ 0, (9)

which also hold with strict inequalities. By Lemma 1, (ℓ, r) satisfies V I
t (q)V

B
t (q) ≥ 0

for both q ∈ {ℓ, r} (incentive alignment). By Lemma A.1, (ℓ, r) satisfies V I
t (ℓ) ≤ 0

and V I
t (r) > 0 (incentive balancedness). We show that all of the following four cases

violate these conditions.
Case 1: Suppose t0 < −κ. First, if 1 − t1 + t0 ≥ 0, the strict inequality (9)

implies that V B
t (q) > 0 for all q ∈ [0, 1]. In particular, V B

t (ℓ) > 0 and V B
t (r) > 0.

Incentive alignment implies that V I
t (ℓ) ≥ 0 and V I

t (r) ≥ 0, hence (ℓ, r) does not
satisfy incentive balancedness. Second, if 1 − t1 + t0 < 0, then t1 − t0 > 1. From
(8)–(9), we have

q ≥ −t0
t1 − t0

if and only if V I
t (q) ≥ 0, and

q ≤ κ+ t0
1− t1 + t0

if and only if V B
t (q) ≥ 0.

The incentive alignment requires that both posteriors ℓ and r lie in the interval[
κ+t0

1−t1+t0
, −t0
t1−t0

]
. This implies that V I

t (ℓ) ≥ 0 and V I
t (r) ≥ 0, violating incentive

balancedness.
Case 2: Suppose t0 ≥ 0. First, if t1 ≥ t0, the inequality (8) implies that

V I
t (q) ≥ 0 for all q ∈ [0, 1]. In particular, V I

t (ℓ) ≥ 0 and V I
t (r) ≥ 0, violating the

incentive balancedness. Second, if t1 < t0, we have 1− t1+ t0 > 1. From (8)–(9), we
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have

q ≤ −t0
t1 − t0

if and only if V I
t (q) ≥ 0, and

q ≥ κ+ t0
1− t1 + t0

if and only if V B
t (q) ≥ 0.

As in Case 1, incentive alignment requires that both posteriors ℓ and r lie on the
interval

[
κ+t0

1−t1+t0
, −t0
t1−t0

]
. Thus, V I

t (ℓ) ≤ 0 and V I
t (r) ≤ 0, violating incentive bal-

ancedness.
Case 3: Suppose t1 ≤ 0. We know from Cases 1–2 that t0 ∈ [−κ, 0), so V I

t (q) =

(1 − q)t0 + qt1 ≤ 0 for all q ∈ [0, 1]. This implies that V I
t (ℓ) ≤ 0 and V I

t (r) ≤ 0,
which violates incentive balancedness.

Case 4: Suppose t1 > 1−κ. As before, we know from Cases 1–2 that t0 ∈ [−κ, 0).
Consequently, V B

t (q) = (1 − q)(−κ − t0) + q(1 − κ − t1) < 0 for all q ∈ (0, 1]. In
particular, V B

t (r) < 0. Incentive alignment requires that V I
t (r) ≤ 0, which violates

incentive balancedness.
We know from Cases 1–2 that t0 ∈ [−κ, 0). In addition, we know from Cases 3–4

that t1 ∈ (0, 1 − κ]. These results imply that a contract that implements a success
rate ρ > 0 satisfies (t0, t1) ∈ [−κ, 0)× (0, 1− κ]. ■

Proof of Theorem 2

We introduce further notation and establish several lemmas. For any σ ∈ Σ̂, let
σω denote σ(s1|ω), the conditional probability of the optimistic signal. Thus, σ0 =

σ(s1|0) and σ1 = σ(s1|1). Consider a metric d : Σ̂× Σ̂ −→ R such that

d(σ, σ′) =
√

(σ0 − σ′
0)

2 + (σ1 − σ′
1)

2, (10)

which is the Euclidean distance between (σ0, σ1) and (σ′
0, σ

′
1) in R2. For the rest of

the proof, we use this metric for the distance between any two binary due diligence
structures.

For any contract t ∈ T , define Λ(t) as the set of all binary due diligence structures
that are incentive-aligned under the contract t. Define Q(t) as the set of all pairs of
posteriors (ℓ, r) ∈ [0, p)×(p, 1] induced by some σ ∈ Λ(t). The mapping from the set
Λ(t) of incentive-aligned due diligence structures and the set Q(t) of their induced
posteriors is invertible, resulting in the following lemma.
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Lemma A.2. Let t ∈ T and σ ∈ Λ(t) be given. Let (ℓ, r) ∈ [0, p)× (p, 1] denote the
pair of posteriors induced by σ. Then σ ∈ int(Λ(t)) if and only if (ℓ, r) ∈ int(Q(t)).

Proof. Let us write σω = σ(s1|ω) for both ω ∈ Ω. Because (ℓ, r) is the pair of
posteriors induced by σ, it satisfies

ℓ =
(1− σ1)p

(1− σ0)(1− p) + (1− σ1)p
and r =

σ1p

σ0(1− p) + σ1p
. (11)

Equivalently, we have

σ0 =
1− r

1− p
· p− ℓ

r − ℓ
and σ1 =

r

p
· p− ℓ

r − ℓ
.

So there exists a continuous and invertible map f : Λ(t) −→ Q(t) given by (11).
As a result, (ℓ, r) ∈ intQ(t) implies f−1(ℓ, r) ∈ intΛ(t). Conversely, σ ∈ int (Λ(t))
implies f(σ) ∈ (Q(t)). This completes the proof of Lemma A.2.

Recall from Lemma A.1 that if (σ,µ,α) is an equilibrium with a positive success
rate, σ is incentive-aligned. The following lemma generalizes this result to any binary
due diligence structure σ not necessarily on the equilibrium path.

Lemma A.3. Suppose a message rule µ and an action rule α are mutual best re-
sponses given (t, σ) ∈ T × Σ̂. Then U I

t (σ, µ, α) ≥ 0 only if σ ∈ Λ(t).

Proof. Let (ℓ, r) ∈ [0, p) × (p, 1] denote the pair of posteriors induced by σ. Let
σ̃ = µ ◦ σ so that, for all ω ∈ Ω and s̃ ∈ S,

σ̃(s̃|ω) =
∑
s∈S

µ(s̃|s)σ(s|ω). (12)

Let q0, q1, . . . , qJ−1 denote the posteriors induced by σ̃. Let M0 = {m ∈ M : α(m) =

0} and M1 = {m ∈ M : α(m) = 1}.
Step 1. Show that the success rate lies within the open interval (0, 1).

Let ρ = 1
κU

S
t (σ, µ, α) denote the success rate under σ, µ, and α. Observe that,

because σ ∈ Σ̂ and thus C(σ) > 0, the intermediary’s expected revenue is strictly
positive. That is, U I

t (σ, µ, α) + C(σ) > 0. First, suppose ρ = 0. Then m ∈ M0

for all messages m ∈ M such that π(m|σ̃) > 0. Then the intermediary’s expected
revenue is zero, a contradiction. Second, suppose ρ = 1. Since α is a best response,
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this implies that V B
t (q) ≥ 0 for all posteriors induced by σ̃ with positive probability.

As in the proof of Proposition 1, this implies that U I
t (σ, µ, α) < 0, a contradiction.

Step 2. Show that σ̃ is incentive-aligned. We proceed in the same way
as in Step 1 of the proof of Lemma 1. Observe that neither M0 nor M1 are empty
because US

t (σ, µ, α) ∈ (0, 1). Suppose σ̃ is not incentive-aligned. Then there exists
a posterior qj induced by σ̃ with positive probability such that V I

t (qj)V
B
t (qj) < 0.

First, suppose V I
t (qj) > 0 and V B

t (qj) < 0. Because α is a best response, α(sj) = 0.
It follows that µ is not a best response, a contradiction. Second, suppose V I

t (qj) < 0

and V B
t (qj) > 0. Because α is a best response, α(sj) = 1. Then µ is not a best

response, a contradiction.
Step 3. Show that σ is incentive-aligned. Since σ̃ is a garbling of σ, ℓ ≤

min{q0, q1, . . . , qJ−1} and r ≥ max{q0, q1, . . . , qJ−1}. Since σ̃ is incentive-aligned and
the intermediary’s revenue is strictly positive, V I

t (qj) ≤ 0 for some j and V I
t (qk) > 0

for some k. Since, from Theorem 1, V I
t and V B

t are both increasing functions, we
have V I

t (ℓ) < 0, V I
t (r) > 0, V B

t (ℓ) ≤ 0, and V B
t (r) ≥ 0. Therefore, V I

t (ℓ)V
B
t (ℓ) ≥ 0

and V I
t (r)V

B
t (r) ≥ 0, meaning that σ ∈ Λ(t). This complete the proof of Lemma

A.3.

The next lemma shows that the intermediary’ expected payoffs are smooth and
strictly concave. A critical requirement for this result is that the collection of mes-
sage rules and action rules are not Pareto-dominated. This condition ensures that
the equilibrium of the talking-stage subgame is the informative one whenever it is
available, leading to truthful revelation and mutually preferred actions.

Lemma A.4. Let a contract t ∈ T be given. Let (µ,α) = {(µσ, ασ)}σ∈Σ be given
such that it is a mutual best response and is not Pareto-dominated. The map σ 7→
U I
t (σ, µσ, ασ) with domain Λ(t) is continuously differentiable and strictly concave.

Proof. To streamline the notation, define π(ω) as the prior probability of the state
ω, so that π(0) = 1− p and π(1) = p. Observe that

U I
t (σ, µσ, ασ) =

∑
ω∈Ω

∑
s∈S

∑
m∈M

tωασ(m)µσ(m|s)σ(s|ω)π(ω)− C(σ). (13)

Let Mj = {m ∈ M : ασ(m) = j} for all j = 0, 1. As in Step 5 of Proof of Lemma
1, the fact that σ ∈ Λ(t), (µσ, ασ) is a mutual best response and is not Pareto-
dominated implies that µ(m|sj) = 1 for all m ∈ Mj for all j = 0, 1. It follows
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that
U I
t (σ, µσ, ασ) =

∑
ω∈Ω

∑
a∈A

tωaσ(sa|ω)π(ω)− C(σ). (14)

The first term on the right-hand side of the above equation is affine in σ. The
second term, C(σ), is continuously differentiable and strictly convex in σ. Therefore,
U I
t (σ, µσ, ασ) is strictly concave in σ on the domain Λ(t). This completes the proof

of Lemma A.4.

Under any seller-optimal constraint, the intermediary’s equilibrium choice of the
due diligence structure is not an interior point, as she faces incentive alignment as a
binding constraint:

Lemma A.5. Suppose a contract t∗ ∈ T is seller-optimal, implementing a maximal
success rate ρ∗ > 0 with equilibrium (σ∗,µ,α). Then σ∗ /∈ intΛ(t∗).

Proof. Let (ℓ∗, r∗) denote the pair of posteriors induced by σ∗. Since (σ∗,µ,α) is
an equilibrium, (ℓ∗, r∗) maximizes the intermediary’s expected payoffs given (µ,α).
That is,

(ℓ∗, r∗) ∈ argmax
(ℓ,r)∈Q(t∗)

p− ℓ

r − ℓ
[(1− r)t∗0 + rt∗1]−

(
1− p− ℓ

r − ℓ

)
c(ℓ)− p− ℓ

r − ℓ
c(r).

Contrary to the lemma’s statement, suppose σ∗ ∈ intΛ(t∗). Then by Lemma A.2,
(ℓ∗, r∗) ∈ intQ(t∗). This implies that (ℓ, r, t0, t1) = (ℓ∗, r∗, t∗0, t

∗
1) satisfies the neces-

sary first-order conditions

c′(r)− c′(ℓ)− (t1 − t0) = 0, and (15)

(r − ℓ)c′(r)− [c(r)− c(ℓ)]− (r − ℓ)(t1 − t0) + (1− r)t0 + rt1 = 0. (16)

Let functions f(ℓ, r, t0, t1) and g(ℓ, r, t0, t1) denote the left-hand sides of the equa-
tions (15) and (16), respectively. Observe that the Jacobian matrix ∂(f, g)/∂(ℓ, r)

evaluated at (ℓ∗, r∗, t∗0, t
∗
1) yields

Y =

[
∂f/∂ℓ ∂f/∂r

∂g/∂ℓ ∂g/∂r

]
(ℓ∗,r∗,t∗0,t

∗
1)

=

[
−c′′(ℓ∗) c′′(r∗)

0 (r∗ − ℓ∗)c′′(r∗)

]
. (17)

Since c is strictly convex, the Jacobian determinant −(r∗−ℓ∗)c′′(ℓ∗)c′′(r∗) is nonzero.
Observe also that another Jacobian matrix ∂(f, g)/∂(t0, t1) evaluated at the same
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point yields

Z =

[
∂f/∂t0 ∂f/∂t1

∂g/∂t0 ∂g/∂t1

]
(ℓ∗,r∗,t∗0,t

∗
1)

=

[
1 −1

1− ℓ∗ ℓ∗

]
.

By the Implicit Function Theorem, there exists a unique pair (ℓ, r) = (ℓ̂(t0, t1), r̂(t0, t1))

for any (t0, t1) that satisfies equations (15)–(16) around a small neighborhood of
(ℓ∗, r∗) and (t∗0, t

∗
1). Moreover, the Jacobian matrix ∂(ℓ̂, r̂)/∂(t0, t1) evaluated at

(ℓ∗, r∗, t∗0, t
∗
1) is

−Y −1Z =

[
− 1−ℓ∗

(r∗−ℓ∗)c′′(ℓ∗) +
1

c′′(ℓ∗) − ℓ∗

(r∗−ℓ∗)c′′(ℓ∗) −
1

c′′(ℓ∗)

− 1−ℓ∗

(r∗−ℓ∗)c′′(r∗) − ℓ∗

(r∗−ℓ∗)c′′(r∗)

]
.

From the above Jacobian matrix ∂(ℓ̂, r̂)/∂(t0, t1), we have

∂ℓ̂

∂t0
+

∂ℓ̂

∂t1
= − 1

(r∗ − ℓ∗)c′′(ℓ∗)
< 0, and

∂r̂

∂t0
+

∂r̂

∂t1
= − 1

(r∗ − ℓ∗)c′′(r∗)
< 0.

Thus, a small increase in both components of the contract (t∗0, t
∗
1) by the same size

leads to strict decreases in both equilibrium posteriors ℓ∗ and r∗, which strictly
increases the success rate ρ∗ = p−ℓ∗

r∗−ℓ∗ . Therefore, t∗ is not optimal, a contradiction.
This completes the proof of Lemma A.5.

We now prove Theorem 2. Let t∗ = (t∗0, t
∗
1) ∈ T denote a seller-optimal con-

tract implementing the maximal success rate ρ∗ with equilibrium (σ∗,µ,α). Let
(ℓ∗, r∗) ∈ [0, p)× (p, 1] denote the pair of posteriors generated by σ∗. Because σ∗ is
the intermediary’s best response,

(ℓ∗, r∗) ∈ argmax
(ℓ,r)

p− ℓ

r − ℓ
· [(1− r)t∗0 + rt∗1]−

(
1− p− ℓ

r − ℓ

)
c(ℓ)− p− ℓ

r − ℓ
c(r)

subject to (ℓ, r) ∈ [0, p)× (p, 1],

V I
t∗(ℓ) ≤ 0, and

V B
t∗ (r) ≥ 0.

Contrary to the theorem’s statement, suppose V B
t∗ (r) > 0. Because c′(ℓ) −→ −∞

as ℓ −→ 0 and c′(r) −→ ∞ as r −→ 1, we know that ℓ∗ ̸= 0 and r∗ ̸= 1. It follows
that the only constraint that possibly binds in the above maximization problem is
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V I
t (ℓ) ≤ 0. Because (ℓ∗, r∗) is not an interior point of the constraint set (Lemma

A.5), we have V I
t∗(ℓ

∗) = 0. After letting the Lagrange multipliers be zero for the
other constraints, the first-order necessary conditions for (ℓ∗, r∗) yield

(1− ℓ∗)t∗0 + ℓ∗t∗1 = 0, and

(r∗ − ℓ∗)c′(r∗)− [c(r∗)− c(ℓ∗)]− (r∗ − ℓ∗)(t∗1 − t∗0) + (1− r∗)t∗0 + r∗t∗1 = 0.

These imply that (r∗ − ℓ∗)c′(r∗) = c(r∗) − c(ℓ∗). Because c is strictly convex, it
follows that ℓ∗ = r∗ = p∗, a contradiction. ■

Proof of Theorem 3

Suppose a contract t∗ implements a positive success rate ρ∗ in an equilibrium (σ∗,µ∗,α∗).
From the definition of an optimal contract and Lemma 1, we know that the contract
t∗ is optimal if and only if

(t∗, σ∗) ∈ argmax
(t,σ)∈T×Σ̂

US
t (σ, µσ, ασ)

subject to
σ∗ ∈ argmax

σ∈Λ(t)
U I
t (σ, µσ, ασ). (18)

Equivalently, with a change of variables from σ∗ to (ℓ∗, r∗), the contract t∗ is
optimal if and only if

(t∗, ℓ∗, r∗) ∈ argmax
(t,ℓ′,r′)∈T×[0,p)×(p,1]

p− ℓ′

r′ − ℓ′
(19)

subject to

(ℓ′, r′) ∈ argmax
(ℓ,r)∈Q(t)

p− ℓ

r − ℓ
· [(1− r)t∗0 + rt∗1]−

(
1− p− ℓ

r − ℓ

)
c(ℓ)− p− ℓ

r − ℓ
c(r). (20)

From Lemma A.4, U I
t (σ, µσ, ασ) is continuously differentiable and strictly con-

cave in σ. Thus, the first-order necessary conditions for the problem (18) are also
sufficient. This implies that the first-order necessary conditions for the equivalent
problem (20) are also sufficient.

Observe that the constraint (ℓ, r) ∈ Q(t) in (20) is equivalent to the combined

38



condition
(ℓ, r) ∈ [0, p)× (p, 1], (21)

(1− r)t0 + rt1 ≥ r − κ, and (22)

(1− ℓ)t0 + ℓt1 ≤ 0. (23)

From Theorem 2, the condition (22) holds with equality. With the constraints (21)–
(23), the first-order conditions of (20) are

c(r)− c(ℓ)− (r − ℓ)c′(ℓ) = (1− r)t0 + rt1, and (24)

c(r)− c(ℓ)− (r − ℓ)c′(r) ≤ (1− ℓ)t0 + ℓt1. (25)

By substituting the condition (22) with equality into the right-hand side of (24), we
obtain

c(r)− c(ℓ)− (r − ℓ)c′(ℓ) = r − κ. (26)

This result implies that the condition (19)–(20) is equivalent to the combined
condition (22) with equality, (23), (25), and

(ℓ∗, r∗) ∈ argmax
(ℓ,r)∈[0,p)×(p,1]

p− ℓ

r − ℓ
subject to (26),

which is the desired result. ■

Proof of Corollary 1

Let (t0, t1) ∈ T denote a seller-optimal contract that implements the maximal success
rate. Let (ℓ, r) ∈ [0, p)× (p, 1] denote the pair of seller-optimal posteriors.

From the definition, the intermediary’s ROI is −t1/t0 whereas the buyer’s ROI
is (1− κ− t1)/(κ+ t0). From Theorem 3, we have

(1− r)t0 + rt1 = r − κ, (27)

which implies (1− κ)t0 + κt1 > 0. It follows that

t1
−t0

>
1− κ− t1
κ+ t0

.

In addition, if the contract (t0, t1) is the minimum-variance seller-optimal con-
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tract, we have
(1− ℓ)t0 + ℓt1 = 0. (28)

Equation (28) implies that the intermediary’s ROI is 1−ℓ
ℓ . Equation (27) implies

that the buyer’s ROI is 1−r
r . ■

B Existence of a seller-optimal pair of posteriors

In this section, we provide conditions for the existence of a seller-optimal pair of
posteriors. Recall from Definition 5 that a seller-optimal pair of posteriors is a
solution to the problem

max
(ℓ,r)∈[0,p)×(p,1]

p− ℓ

r − ℓ
subject to c(r)− c(ℓ)− (r − ℓ)c′(ℓ) = r − κ. (29)

Let a function h : [0, p]× [p, 1] −→ [−∞,∞) be defined as

h(ℓ, r) = r − κ− [c(r)− c(ℓ)] + (r − ℓ) lim
q→ℓ

c′(q),

so that the implementability constraint in (29) is equivalent to h(ℓ, r) = 0. Let

r = (c′)−1
(
1 + c′(p)

)
,

where the inverse (c′)−1 is well-defined as c is strictly convex.
The following provides a necessary and sufficient condition for the solution’s

existence.

Proposition B.1. A seller-optimal pair of posteriors exists if and only if h(p, r) > 0.

Proof. To show the “if” part of the statement, suppose h(p, r) > 0. Since h(0, r) =

−∞ and h is continuous, the level set

L = {(ℓ, r) ∈ [0, p]× [p, 1] : h(ℓ, r) = 0}

is nonempty and closed. Observe that the objective function f(ℓ, r) = p−ℓ
r−ℓ is bounded

everywhere except (p, p), which does not belong in the level set L. By Weirstrass’ ex-
treme value theorem, there exists (ℓ∗, r∗) ∈ L such that f(ℓ∗, r∗) = sup(ℓ,r)∈L f(ℓ, r).
The maximizer (ℓ∗, r∗) belongs to the set [0, p)× (p, 0], as f(p, r) = 0 for all r ∈ [p, 0]

and h(ℓ, p) < 0 for all ℓ ∈ [0, p].

40



Conversely, to show the “only if” part of the statement, suppose that a seller-
optimal posterior exists, and suppose h(p, r) ≤ 0. Observe that h(ℓ, r) is strictly
increasing in ℓ, as hℓ(ℓ, r) = (r − ℓ)c′′(ℓ). In addition, for all ℓ ∈ [0, p], r =

argmaxr∈[p,1] h(ℓ, r) as hr(ℓ, r) = 0 and h(ℓ, r) is strictly concave in r. Consequently,
for all (ℓ, r) ∈ [0, p)× (p, 1], we have

h(ℓ, r) < h(p, r) ≤ h(p, r) ≤ 0.

It follows that the implementability constraint set is empty, a contradiction. ■

An intuitive sufficient condition for the existence is that the cost of acquiring
information is small enough.

Corollary B.1. Let the information cost function be scaled by a constant λ > 0; that
is, let C̃(·) = λC(·) be the new information cost function. There exists a threshold
λ > 0 such that a seller-optimal pair of posteriors exists if λ ≤ λ.

Proof. Under the new information cost function, we have

r = (c′)−1 (1/λ+ c(p)) , and

h(p, r) = r − κ− λ ·
[
c(r)− (r − p)c′(p)

]
.

As λ approaches 0, r approaches 1 and r − κ approaches 1− κ > 0. Since the term
[c(r)− (r − p)c′(p)] is bounded, there exists some λ such that h(p, r) > 0 for all
λ ≤ λ. ■

If a seller-optimal pair of posteriors exists, it is generally unique except in patho-
logical cases. Nonetheless, the following condition guarantees uniqueness.

Proposition B.2. If c′′ is nonincreasing on [0, p], there exists at most one seller-
optimal pair of posteriors.

Proof. Suppose c′′ is nonincreasing on [0, p], and suppose there exist two distinct
seller-optimal pairs of posteriors (ℓ, r) and (ℓ∗, r∗) that result in the same success
rate. That is,

p− ℓ

r − ℓ
=

p∗ − ℓ∗

r∗ − ℓ∗
.
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Without loss of generality, suppose ℓ < ℓ∗ < p < r∗ < r. The first-order necessary
conditions for the optima imply that

hℓ(ℓ, r)

hr(ℓ, r)
=

hℓ(ℓ
∗, r∗)

hr(ℓ∗, r∗)
.

where the denominators hr(ℓ, r) and hr(ℓ
∗, r∗) are positive. We have

hℓ(ℓ, r)

hr(ℓ, r)
=

(r − ℓ)c′′(ℓ)

1− c′(r) + c′(ℓ)
>

(r∗ − ℓ∗)c′′(ℓ∗)

1− c′(r∗) + c′(ℓ∗)
=

hℓ(ℓ
∗, r∗)

hr(ℓ∗, r∗)
,

a contradiction. It follows that there cannot be two distinct seller-optimal pairs of
posteriors. ■

C Comparative statics

Our model has three key exogenous components: the initial probability p that the
entrepreneur’s firm will have high market value, the net offering price κ of the en-
trepreneur’s firm, and the cost of information acquisition C by the investment bank.
We explore how changes in these underlying parameters affect the model’s outcome
variables.

To this end, we modify the assumption about the cost function to accommodate
changes in p and scaling by a parameter λ > 0.

Assumption C.1. For every p ∈ (0, 1) and λ > 0, the information cost function
C(p,λ) is uniformly posterior-separable (Caplin, Dean, and Leahy, 2022). That is,
there exists a function c̃ : [0, 1] −→ R such that, for every due diligence structure
σ ∈ Σ that induces posteriors q0, q1, . . . , qJ−1,

C(p,λ)(σ) = λ ·
J−1∑
j=0

Pσ(sj) [c̃(qj)− c̃(p)] .

In addition, the function c̃ satisfies the properties P1–P3 of Assumption 1.

Note that this modified cost function nests the original cost function as C(σ) =

C(p,λ)(σ) with λ = 1 and c(q) = λ · [c̃(q)− c̃(p)]. We maintain c(q) for the base case
of λ = 1 and introduce c̃(q) only when we consider changes in λ.

Because there exist multiple seller-optimal contracts in general (Theorem 3), we
narrow our focus on the responses of a specific optimum.
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Definition C.1. Let (p, κ, λ) be given. For any θ ∈ [0, 1], a θ-seller-optimal contract
is a seller-optimal contract t∗ = (t∗0, t

∗
1) such that

(1− ℓ∗)t∗0 + ℓ∗t∗1 = θ
[
c(r∗)− c(ℓ∗)− (r∗ − ℓ∗)c′(r∗)

]
,

where (ℓ∗, r∗) is a seller-optimal pair of posteriors.

Note that, with this definition, every seller-optimal contract qualifies as a θ-seller-
optimal contract for some θ ∈ [0, 1]. For the remainder of this section, let θ ∈ [0, 1]

be fixed.
As in Appendix B, define the function h : [0, p]× [p, 1] −→ [−∞,∞) as

h(ℓ, r) = r − κ− [c(r)− c(ℓ)] + (r − ℓ) lim
q→ℓ

c′(q),

so that the implementability constraint in Definition 5 is equivalent to h(ℓ, r) = 0.
We assume that h is strictly quasiconcave, so that there exists at most one seller-
optimal pair of posteriors given (p, κ, λ).

Corollary C.1 (Changes in p). Suppose p′ ∈ (p, κ), and let ((t0, t1), (ℓ, r), ρ) and
((t′0, t

′
1), (ℓ

′, r′), ρ′) denote the triples of θ-optimal contracts, the seller-optimal pair
of posteriors, and the resulting success rates given ex-ante probabilities on the good
state p and p′, respectively. Then

(a) t0 > t′0 and t1 > t′1,

(b) ℓ < ℓ′ and r > r′, and

(c) ρ < ρ′.

In other words, as the ex-ante probability on the good state increases, the trans-
fers to the intermediary in both states decrease, the due diligence structure becomes
less informative, and the success rate increases. This shift occurs because, as the
entrepreneur’s firm is more likely to have high market value, the intermediary does
not need to work as hard to sell the firm’s shares to the buyer.

Proof of Corollary C.1. Observe that

ρ =
p− ℓ

r − ℓ
<

p′ − ℓ

r − ℓ
≤ p′ − ℓ′

r′ − ℓ′
= ρ′,
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where the first inequality is implied by p < p′ and the second inequality is due to
(ℓ′, r′) being the seller-optimal pair of posteriors given p′. It follows that ρ < ρ′.

As (ℓ, r) and (ℓ′, r′) are the seller-optimal pairs of posteriors given p and p′, their
first-order conditions imply

1− ρ

ρ
=

hℓ(ℓ, r)

hr(ℓ, r)
and

1− ρ′

ρ′
=

hℓ(ℓ
′, r′)

hr(ℓ′, r′)
.

Because ρ < ρ′, the above implies that

hℓ(ℓ, r)

hr(ℓ, r)
>

hℓ(ℓ
′, r′)

hr(ℓ′, r′)
.

By the strict quasiconcavity of h, it follows that ℓ < ℓ′ and r > r′. By the definition
of θ-seller-optimal contracts, these inequalities imply that t0 > t′0 and t1 > t′1, com-
pleting the proof. ■

Corollary C.2 (Changes in κ). Suppose κ′ ∈ (κ, 1), and let ρ and ρ′ denote the
maximal success rates given the net offering prices κ and κ′, respectively. Then
κρ > κ′ρ′.

That is, raising the net offering price κ reduces the expected revenue κρ of the
entrepreneur (seller). In other words, the buyer’s demand ρ for the seller’s firm is
inelastic with respect to its price κ. The simple intuition behind this result is the
agency costs of contracting with the intermediary. It is costly for the seller to induce
the intermediary to extract additional surplus from the buyer, as the seller must
respect the intermediary’s incentives. This cost is reflected in the implementability
constraint for the seller-optimal pair of posteriors. In constrast, if there were no
such constraint, the entrepreneur’s expected revenue would be constant at p, as the
maximal success rate is p/κ by letting the posteriors be (ℓ, r) = (0, κ).

Proof of Corollary C.2. Define ρ̂(κ) as the maximal success rate given a net offering
price κ subject to the implementability constraint. That is,

ρ̂(κ) = max
(ℓ,r)∈[0,p)×(p,1]

p− ℓ

r − ℓ
subject to c(r)− c(ℓ)− (r − ℓ)c′(ℓ) = r − κ.

Let (ℓ̂(κ), r̂(κ)) denote the maximizer in the above problem. By Envelope Theorem,
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the derivative of ρ̂ satisfies

ρ̂′(κ) =
ρ̂(κ)[

r̂(κ)− ℓ̂(κ)
]
·
[
1− c′(r̂(κ)) + c′(ℓ̂(κ))

] .
This derivative and the implementability constraint imply that κρ̂(κ) is strictly de-
creasing in κ. ■

Let λ > 0 denote a threshold such that a seller-optimal pair of posteriors exists
for every λ ∈ (0, λ). From Corollary B.1, such threshold exists.

Corollary C.3 (Changes in C). Let ((t0(λ), t1(λ)) , (ℓ(λ), r(λ)) , ρ(λ)) denote the
triple of θ-seller-optimal contract, the seller-optimal pair of posteriors, and the re-
sulting success rate given the cost scaling parameter λ ∈ (0, λ). As λ approaches
0,

(a) t0(λ) −→ 0, t1(λ) −→ 0,

(b) ℓ(λ) −→ 0, r(λ) −→ κ, and

(c) ρ(λ) −→ p/κ.

A key insight from this result is that, as acquiring information becomes less
costly, the seller-optimal pair of posteriors approaches (0, κ), which is the same as
the seller’s choice if he had costless information with full commitment power as in
Bayesian persuasion (Kamenica and Gentzkow, 2011). Rather than having such
commitment power by assumption, however, the seller in our model gains credibil-
ity by designing an appropriate contract and delegating the communication to the
intermediary. In this sense, our model offers a concrete microfoundation for the
commitment assumption.

Proof of Corollary C.3. Observe that

(ℓ(λ), r(λ)) ∈ argmax
(ℓ,r)∈[0,p)×(p,1]

p− ℓ

r − ℓ

subject to λ ·
[
c̃(r)− c̃(ℓ)− (r − ℓ)c̃′(ℓ)

]
= r − κ.

By the Maximum Theorem, ℓ(λ) and r(λ) are continuous in λ.
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Let ε > 0 be given. Define the ε-neighborhood of (0, κ) as

Bε(0, κ) =
{
(ℓ, r) : 0 ≤ ℓ < ϵ and κ ≤ r < κ+ ϵ

}
.

There exists a pair (ℓε, rε) ∈ Bε(0, κ) such that, for every (ℓ, r) ∈ [0, p) × (p, 1],
f(ℓ, r) ≥ f(ℓε, rε) implies (ℓ, r) ∈ Bε(0, κ). Define λε so that (ℓε, rε) satisfies the
implementation constraint given λε. That is, let

λε =
rε − κ

c̃(rε)− c̃(ℓε)− (rε − ℓε)c̃′(ℓε)
.

Let (ℓ∗ε, r∗ε) denote the seller-optimal pair of posteriors given the cost scaling param-
eter λε. By construction, (ℓ∗ε, r∗ε) ∈ Bε(0, κ).

By the continuity of ℓ(·) and r(·), there exists δ > 0 such that λ∗ ∈ (λε−δ, λε+δ)

implies |(ℓ(λ∗), r(λ∗))− (ℓ∗ε, r
∗
ε)| < ε, where | · | denotes the Euclidean norm.

By triangle inequality, we have

∣∣(ℓ(λ∗), r(λ∗))− (0, κ)
∣∣ ≤ ∣∣(ℓ(λ∗), r(λ∗))− (ℓ∗ε, r

∗
ε)
∣∣+ ∣∣(ℓ∗ε, r∗ε)− (0, κ)

∣∣ < 2ε.

This implies that, for every λ ∈ (0, λ∗),

p− ℓ(λ)

r(λ)− ℓ(λ)
= ρ(λ) ≥ ρ(λ∗) >

p− 2ε

κ
.

As a result, we have

(ℓ(λ), r(λ)) ∈ Bε′(0, κ) where ε′ = max

{
2εκ

p− 2ε
,

2εκ

κ− (p− 2ε)

}
.

Since the choice of ε is arbitrary, the above implies that (ℓ(λ), r(λ)) −→ (0, κ) as
λ −→ 0. Therefore, ρ(λ) −→ p/κ as λ −→ 0.

Finally, observe that t0(λ) and t1(λ) satisfy

(1− r(λ)) · t0(λ) + r(λ) · t1(λ) = r(λ)− κ, and

(1− ℓ(λ)) · t0(λ) + ℓ(λ) · t1(λ) = λθ
[
c(r(λ))− c(ℓ(λ))− (r(λ)− ℓ(λ))c′(r(λ))

]
,

which imply that both t0(λ) and t1(λ) approach 0 as λ −→ 0. ■
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